Онлайн калькуляторы

На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.

Справочник

Основные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!

Заказать решение

Не можете решить контрольную?!
Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!

Серная кислота

Характеристики и физические свойства серной кислоты

ОПРЕДЕЛЕНИЕ
Безводная серная кислота представляет собой тяжелую, вязкую жидкость, которая легко смешивается с водой в любой пропорции: взаимодействие характеризуется исключительно большим экзотермическим эффектом (~880 кДж/моль при бесконечном разбавлении) и может привести к взрывному вскипанию и разбрызгиванию смеси, если воду добавлять к кислоте; поэтому так важно всегда использовать обратный порядок в приготовлении растворов и добавлять кислоту в воду, медленно и при перемешивании.

Некоторые физические свойства серной кислоты приведены в таблице.

Безводная H2SO4 — замечательное соединение с необычно высокой диэлектрической проницаемостью и очень высокой электропроводностью, которая обусловлена ионной автодиссоциацией (автопротолизом) соединения, а также эстафетным механизмом проводимости с переносом протона, обеспечивающим протекание электрического тока через вязкую жидкость с большим числом водородных связей.

Таблица 1. Физические свойства серной кислоты.

Температура плавления, oС

10,371

Температура кипения, oС

≈ 300 (разл.)

Плотность (25oС), г×см-3

1,8267

Вязкость (25oС), сантипуаз

24,55

Диэлектрическая проницаемость

100

Удельная электропроводность (25oС), Ом-1×см-1

1,0439×10-2

Получение серной кислоты

Серная кислота — самый важный промышленный химикат и самая дешевая из производимых в большом объеме кислот влюбой стране мира.

Концентрированную серную кислоту («купоросное масло») сначала получали нагреванием «зеленого купороса» FeSO4×nH2O и расходовали в большом количестве на получение Na2SO4 и NaCl.

В современном процессе получения серной кислоты используется катализатор, состоящий из оксида ванадия(V) с добавкой сульфата калия на носителе из диоксида кремния или кизельгура. Диоксид серы SO2 получают сжиганием чистойсеры или при обжиге сульфидной руды (прежде всего пирита или руд Си, Ni и Zn) в процессе извлечения этихметаллов.Затем SO2 окисляют до триоксида, а потом путем растворения в воде получают серную кислоту:

S + O2→ SO2 (ΔH0 — 297 кДж/моль);

SO2 + ½ O2→ SO3 (ΔH0 — 9,8 кДж/моль);

SO3 + H2O → H2SO4 (ΔH0 — 130 кДж/моль).

Химические свойства серной кислоты

Серная кислота – сильная двухосновная кислота. По первой ступени в растворах невысокой концентрации она диссоциирует практически нацело:

H2SO4↔H+ + HSO4.

Диссоциация по второй ступени

HSO4↔H+ + SO42-

протекает в меньшей степени. Константа диссоциации серной кислоты по второй ступени, выраженная через активности ионов, K2 = 10-2.

Как кислота двухосновная, серная кислота образует два ряда солей: средние и кислые. Средние соли серной кислоты называются сульфатами, а кислые – гидросульфатами.

Серная кислота жадно поглощает пары воды и поэтому часто применяется для осушения газов. Способностью поглощать воду объясняется и обугливание многих органических веществ, особенно относящихся к классу углеводов (клетчатка, сахар и т.д.), при действии на них концентрированной серной кислоты. Серная кислота отнимает от углеводов водород и кислород, которые образуют воду, а углерод выделяется в виде угля.

Концентрированная серная кислота, особенно горячая, — энергичный окислитель. Она окисляет HI и HBr (но не HCl) до свободных галогенов, уголь – до CO2, серу – до SO2. Указанные реакции выражаются уравнениями:

8HI + H2SO4 = 4I2 + H2S↑ + 4H2O;

2HBr + H2SO4 = Br2 + SO2↑ + 2H2O;

C + 2H2SO4 = CO2↑ + 2SO2↑ + 2H2O;

S + 2H2SO4 = 3SO2 + 2H2O.

Взаимодействие серной кислоты с металлами протекает различно в зависимости от её концентрации. Разбавленная серная кислота окисляет своим ионом водорода. Поэтому она взаимодействует только с теми металлами, которые стоят в ряду напряжений только до водорода, например:

Zn + H2SO4 = ZnSO4 + H2↑.

Однако свинец не растворяется в разбавленной кислоте, поскольку образующаяся соль PbSO4 нерастворима.

Концентрированная серная кислота является окислителем за счет серы (VI). Она окисляет металлы, стоящие в ряду напряжений до серебра включительно. Продукты её восстановления могут быть различными в зависимости от активности металла и от условий (концентрация кислоты, температура). При взаимодействии с малоактивными металлами, например с медью, кислота восстанавливается до SO2:

Cu + 2H2SO4 = CuSO4 + SO2↑ + 2H2O.

При взаимодействии с более активными металлами продуктами восстановления могут быть как диоксид, так и свободная сера и сероводород. Например, при взаимодействии с цинком могут протекать реакции:

Zn + 2H2SO4 = ZnSO4 + SO2↑ + 2H2O;

3Zn + 4H2SO4 = 3ZnSO4 + S↓ + 4H2O;

4Zn + 5H2SO4 = 4ZnSO4 + H2S↑ + 4H2O.

Применение серной кислоты

Применение серной кислоты меняется от страны к стране и от десятилетия к десятилетию. Так, например в США в настоящее время главная область потребления H2SO4 — производство удобрений (70%), за ним следуют химическое производство, металлургия, очистка нефти (~5% в каждой области). В Великобритании распределение потребления по отраслям иное: только 30% производимой H2SO4 используется в производстве удобрений, зато 18% идет на краски, пигменты и полупродукты производства красителей, 16% на химическое производство, 12% на получение мыла и моющих средств, 10% на производство натуральных и искусственных волокон и 2,5% применяется в металлургии.

Примеры решения задач

ПРИМЕР 1
Задание Определите массу серной кислоты, которую можно получить из одной тонны пирита, если выход оксида серы (IV) в реакции обжига составляет 90%, а оксида серы (VI) в реакции каталитического окисления серы (IV) – 95% от теоретического.
Решение Запишем уравнение реакции обжига пирита:

4FeS2 + 11O2 = 2Fe2O3 + 8SO2.

Рассчитаем количество вещества пирита:

n(FeS2) = m(FeS2) / M(FeS2);

M(FeS2) = Ar(Fe) + 2×Ar(S) = 56 + 2×32 = 120г/моль;

n(FeS2) = 1000 кг / 120 = 8,33 кмоль.

Поскольку в уравнении реакции коэффициент при диоксиде серы в два раза больше, чем коэффициент при FeS2, то теоретически возможное количество вещества оксида серы (IV) равно:

n(SO2)theor = 2 ×n(FeS2) = 2 ×8,33 = 16,66 кмоль.

А практически полученное количество моль оксида серы (IV) составляет:

n(SO2)pract = η × n(SO2)theor = 0,9 × 16,66 = 15 кмоль.

Запишем уравнение реакции окисления оксида серы (IV) до оксида серы (VI):

2SO2 + O2 = 2SO3.

Теоретически возможное количество вещества оксида серы (VI) равно:

n(SO3)theor = n(SO2)pract = 15 кмоль.

А практически полученное количество моль оксида серы (VI) составляет:

n(SO3)pract = η × n(SO3)theor = 0,5 × 15 = 14,25 кмоль.

Запишем уравнение реакции получения серной кислоты:

SO3 + H2O = H2SO4.

Найдем количество вещества серной кислоты:

n(H2SO4) = n(SO3)pract = 14,25 кмоль.

Выход реакции составляет 100%. Масса серной кислоты равна:

m(H2SO4) = n(H2SO4) × M(H2SO4);

M(H2SO4) = 2×Ar(H) + Ar(S) + 4×Ar(O) = 2×1 + 32 + 4×16 = 98 г/моль;

m(H2SO4) = 14,25 × 98 = 1397 кг.

Ответ Масса серной кислоты равна 1397 кг
Нужна помощь с
решением задач?
Более 500 авторов онлайн и готовы помочь тебе прямо сейчас! Цена от 20 рублей за задачу. Сейчас у нас проходит акция, мы дарим 100 руб на первый заказ.