Онлайн калькуляторы

На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.

Справочник

Основные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!

Заказать решение

Не можете решить контрольную?!
Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!

Инертные газы

Общая характеристика инертных газов

ОПРЕДЕЛЕНИЕ
Инертные или благородные газы находятся в VIIIA группе Периодической системы химических элементов Д.И. Менделеева – это гелий, неон, аргон, криптон, ксенон и радон.

Каждый период Периодической системы заканчивается инертным газом, кроме гелия, все они имеют на внешнем энергетическом уровне по 8 электронов, образующих очень устойчивую систему, в связи с чем эти элементы получили название инертных. Несмотря на то, что электронная оболочка гелия состоит из двух электронов, она также очень устойчива. В связи с этим явлением атомы инертных газов обладают высокими значениями энергий ионизации и, как правило, отрицательными значениями энергии сродства к электрону.

Электронная конфигурация внешнего энергетического уровня инертных газов – 1s2 (He) и ns2np6 для других инертных газов.

Изначально предполагали, что атомы инертных газов не способны к образованию химических связей с другими элементами. Были известны лишь несколько нестойких соединений благородных газов – гидраты аргона, криптона и ксенона (Ar×6H2O, Kr×6H2O, Xe×6H2O), которые получались при действии инертных газов на кристаллизующуюся переохлажденную воду.

Позже, было установлено, что Kr, Xe и Rn вступают в реакции взаимодействия с другими веществами, например, с фтором, при нагревании или электрическом разряде. Для ксенона известны оксид – XeO3 и гидроксид- Xe(OH)6.

Наибольшее практическое применение среди всех благородных газов находят аргон, неон и гелий.

Гелий

По физическим свойствам гелий наиболее близок к молекулярному водороду. В связи с малой поляризуемостью атома гелия, у него самые низкие температуры кипения и плавления, по сравнению с другими элементами VIIIA группы. Однако, он хуже, чем другие инертные газы растворим в воде.

В обычных условиях гелий химически инертен, но в возбужденном состоянии он способен образовывать неустойчивые молекулярные ионы He2+ или ионизированные молекулы HeH+.

Гелий – наиболее распространенный из элементов космоса, после водорода и состоит из двух изотопов — 4He и 3He. Доказано присутствие гелия в атмосфере Солнца, звезд и в метеоритах.

Гелий получают из некоторых природных газов методом глубокого охлаждения, при этом гелий остается в газообразном состоянии, в то время как другие газы конденсируются.

Гелий нашел применение в атомной энергетике, при автогенной сварке металлов, в физических лабораториях в качестве хладоносителя. Изотоп гелия 3 He – единственное вещество, пригодное для измерения температур ниже 1К.

Неон. Аргон

Основное отличие неона от гелия – большая поляризуемость атома, склонность к образованию межмолекулярных связей, несколько большая растворимость и способность адсорбироваться.

Агрон, как и неон, имеет 8 электронов на внешнем энергетическом уровне и, вследствие высокой устойчивости электронной структуры атома неона, он не способен к образованию соединений валентного типа. Аргон образует молекулярные соединения включения – клатраты – с водой, фенолом, толуолом и другими веществами. С сединениями H2S, SO2, CO2, HCl аргон дает двойные гидраты, т.е. смешанные клатраты.

Неон и аргон получают из воздуха путем его разделения при глубоком охлаждении. Аргон, в связи с его сравнительно высоким содержанием в воздухе, получают в значительных количествах, неон – в меньших.

Неон и аргон применяют в качестве наполнителей ламп накаливания, газосветных трубок (для неона характерно красное свечение, для аргона – сине-голубое). Аргон, как наиболее доступный из инертных газов, используют в металлургии, в частности при аргонно-дуговой сварке алюминиевых и алюминиевомагниевых сплавов.

Подгруппа криптона

Энергия ионизации элементов подгруппы криптона (Kr, Xe, Rn) характеризуются меньшими значениями энергии ионизации, чем типические элементы VIIIA группы, поэтому могут образовывать соединения обычного типа. Так, ксенон может проявлять степени окисления «+2», «+4», «+6», «+8».

Криптон применяют в электровакуумной технике, в смеси с ксеноном его используют в качестве наполнителя для различного вида осветительных ламп и трубок. Радиоактивный радон используют в медицине.

Примеры решения задач

ПРИМЕР 1
Задание При взаимодействии сульфата марганца с фтори­дом ксенона (II) в водном растворе выделилось 4,8 л газа (при температуре 20 °С и нормальном атмосферном давлении). Чему равна масса образовавшейся марганцовой кислоты?
Решение Запишем уравнение реакции:

5ХеF2 + 2МnSО4 + 8Н2О = 5Хе↑ + 2Н24 + 10НF + 2НМnО4

Найдем количество вещества ксенона:

v(Хе) = РV/ RТ= 101,3.4,8 / (8,31.293) = 0,20 моль

Согласно уравнению, количество марганцовой кислоты в 2,5 раза меньше количества ксенона:

v(НМnО4) = v(Хе)×2/5 = 0,08 моль

Найдем массу марганцовой кислоты:

m(НМnО4) = v×М= 0,08×120 = 9,6 г

Ответ Масса марганцовой кислоты — 9,6 г
ПРИМЕР 2
Задание Какие инертные газы были открыты после гелия? Назовите год открытия.
Ответ Неон, криптон, ксенон. 1898 год.
Нужна помощь с
решением задач?
Более 500 авторов онлайн и готовы помочь тебе прямо сейчас! Цена от 20 рублей за задачу. Сейчас у нас проходит акция, мы дарим 100 руб на первый заказ.