Онлайн калькуляторы

На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.

Справочник

Основные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!

Заказать решение

Не можете решить контрольную?!
Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!

Закон Кирхгофа простыми словами

Два приема, которые применяют для упрощения процесса составления уравнений, необходимых при расчетах сложных разветвленных цепей постоянного тока называют законами (вернее было бы сказать правилами) Кирхгофа. Прежде чем перейти к самим правила Кирхгофа введем два необходимых определения.

Разветвлёнными цепями названы цепи, которые имеют несколько замкнутых контуров, несколько источников электродвижущей силы (ЭДС).

Узлом разветвлённой цепи называют точку, в которой сходятся три или более проводников с токами.

Первый закон (правило) Кирхгофа, простыми словами

Первое правило Кирхгофа называют правилом узлов, так как оно касается сил токов в узах цепи. Словесно первый закон Кирхгофа формулируют следующим образом: Алгебраическая сумма сил токов в узле равна нулю. В виде формулы это правило запишем как:

    \[\sum^N_{m=1}{I_m=0} \qquad (1)\]

С каким знаком сила тока будет входить в сумму (1), зависит от произвольного выбора. Но при этом следует считать, что все входящие в узел токи имеют одинаковые знаки, а все исходящие из узла токи имеют противоположные входящим, знаки. Пусть все входящие токи мы примем за положительные, тогда все исходящие их этого узла токи будут отрицательными. Если направления токов изначально не заданы, то их задают произвольно. Если при расчетах получено, что сила тока отрицательна, значит, что верное направление тока является противоположным тому, которое предполагали.

Первый закон Кирхгофа является следствием закона сохранения заряда. Если в цепи текут только постоянные токи, то нет в этой цепи точек, которые накапливали бы заряд. Иначе токи не были бы постоянными.

Первый закон Кирхгофа дает возможность составить l=k-1 независимое уравнение, при наличии в цепи k узлов.

Второй закон (правило) Кирхгофа, простыми словами

Второй закон Кирхгофа относят к замкнутым контурам, поэтому его называют правилом контуров. Согласно этому правилу суммы произведений алгебраических величин сил тока на внешние и внутренние сопротивления всех участков замкнутого контура равны алгебраической сумме величин сторонних ЭДС (\varepsilon), входящих в рассматриваемый контур. В виде формулы второй закон Кирхгофа запишем как:

    \[\sum^N_{m=1}{I_mR_m}=\sum_i{\varepsilon_i} \qquad (2)\]

где величину I_mR_m часто называют падением напряжения; N – число рассматриваемых участков избранного контура. При использовании второго правила Кирхгофа важно помнить о направлении обхода контура. Как это делается? Произвольно выберем направление обхода рассматриваемого в задаче контура (по часовой стрелке или против нее). В случае совпадения направления обхода контура с направлением силы тока в рассматриваемом элементе, величина I_mR_m входит в (2) со знаком плюс. ЭДС войдет в сумму правой части выражения (2) со знаком плюс, если при движении вдоль контура, в соответствии с избранным направлением обхода первым мы встречаем отрицательный полюс источника ЭДС.

Используя второе правило Кирхгофа можно получить независимые уравнения для тех контуров цепи, которые не получены наложением уже описанных контуров. Количестов независимых контуров (n) равно:

    \[n=p-k+1 \qquad (3)\]

где p – количество ветвей в цепи; k – число узлов.

Количество независимых уравнений, которые дадут оба правила Кирхгофа равно (s):

    \[s=l+n=k-1+p-k+1=p \qquad (4)\]

Делаем вывод о том, что число независимых уравнений будет равно числу разных токов в исследуемой цепи.

Второе правило Кирхгофа — следствие закона Ома. В принципе любую цепь можно рассчитать, применяя только закон Ома и закон сохранения заряда. Правила Кирхгофа являются всего лишь упрощающими приемами для решения задач, рассматривающих цепи постоянного тока.

Используя правила Кирхгофа для составления уравнений необходимо внимательно следить за расстановкой знаков токов и ЭДС.

Первое и второе правила Кирхгофа дают метод расчета цепи, то есть используя их можно найти все токи в цепи, если известны все ЭДС и сопротивления, в том числе и внутренние сопротивления источников.

Примеры решения задач

ПРИМЕР 1
Задание Как следует записать уравнение для токов, используя первое правило Кирхгофа для узла А, изображенного на рис.1
Закон Кирхгофа простыми словами, пример 1
Решение Прежде чем применять первое правило Кирхгофа определим для себя, что положительными будут токи, которые входят в узел А, тогда выходящие из этого узла токи мы должны будем записать в первом правиле Кирхгофа со знаком минус. Из рис. 1 в узел А входят токи:

    \[I_3,\ I_{5} \qquad (1.1)\]

Из узла А выходят токи:

    \[I_1,\ I_2,\ I_4 \qquad (1.2)\]

Тогда согласно правилу узлов имеем:

    \[I_3+\ I_{5}-I_1-\ I_2-\ I_4=0\]

Ответ I_3+\ I_{5}-I_1-\ I_2-\ I_4=0
ПРИМЕР 2
Задание Составьте систему независимых уравнений, используя правила Кирхгофа, которая позволит найти все токи в цепи, представленной на рис.2, если известны все ЭДС и все сопротивления (они указаны на рисунке)?
Закон Кирхгофа простыми словами, пример 2
Решение Направления токов выберем произвольно, обозначим их на рис.1. Пусть через сопротивление R_4 течет ток I_1. На рис.2 видно, что в нашей цепи два узла. Это точки A и С. Запишем первое правило Кирхгофа для узла А:

    \[I_3+\ I_1+\ I_2=0 \qquad (2.1)\]

Так как узлов всего два, то первое правило Кирхгофа даст нам только одно независимое уравнение (2.1).

Контуров в подставленной цепи три. Втрое правило Кирхгофа даст нам два независимых уравнения. Рассмотрим контуры ABCA и ACDA. Направлением обхода выберем движение против часовой стрелки. Тогда для контура ABCA имеем:

    \[I_1r_1+I_1R_4-I_2r_2=\varepsilon_1-\varepsilon_2 \qquad (2.2)\]

Для контура ACDA получим:

    \[I_2r_2-I_3R_5-I_3r_3=\varepsilon_1-\varepsilon_2 \qquad (2.3)\]

Получили систему из трех независимых уравнений для трех неизвестных токов:

    \[\left\{ \begin{array}{c} I_3+\ I_1+\ I_2=0\ \\  I_1r_1+I_1R_4-I_2r_2=\varepsilon_1-\varepsilon_2 \\  I_2r_2-I_3R_5-I_3r_3=\varepsilon_1-\varepsilon_2 \end{array} \]

Нужна помощь с
решением задач?
Более 500 авторов онлайн и готовы помочь тебе прямо сейчас! Цена от 20 рублей за задачу. Сейчас у нас проходит акция, мы дарим 100 руб на первый заказ.